Software

Profiling your application
with Intel® Vtune™

Amplifier

Paulius Velesko

Getting a local copy of Vtune™

Get a free version of vtune for
your PC/Mac/Linux machine:

Effective CPU Utilization ¢

https://software.intel.com/en
-us/vtune/choose-download 3 :_—..:..,.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Only Intel® VTune™ Amplifier

This advanced profiler helps you increase application performance on
modern hardware.

Free Download

Download a free copy backed by community forum support.

Buy It Now
A paid product entitles you to:

« Private Priority Support from Intel's engineers
« The ability to submit confidential code samples
« Responsive help with technical questions

« Access to older versions

« Support renewals at a lower rate

Buy the software from a number of resellers or directly from the online store. Special pricing for
academic research is available.

Find a Reseller
Buy Now

Pricing for Academic Research

https://software.intel.com/en-us/vtune/choose-download

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Targeting the current ISA is fundamental to fully exploit vectorization
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)
— Up to 64 Physical cores and 256 logical processors per socket on Thetal
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk |0 and network traffic)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Compiler Reports

FREE* performance metrics

Compile with -qopt-report=5

= Which loops were vectorized = Prefetching
= Vector Length = |ssues preventing vectorization
= Estimated Gain = |nline reports
= Alignment = |nterprocedural optimizations

= Scatter/Gather = Register Spills/Fills

LOOP BEGIN at ../src/timestep.F(4835,13)

remark #15389:
remark #15381:
remark #15335:
remark #15329:
remark #15305:
remark #15399:
remark #15309:
remark #15450:
remark #15463:
remark #15475:
remark #15476:
remark #15477:
remark #15478:
remark #15488:
remark #25439:

LOOP END

vectorization support: reference nbd_(1) has unaligned access [../src/timestep.F(4836,16)]

vectorization support: unaligned access used inside loop body

loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-threshold® to override
vectorization support: irregularly indexed store was emulated for the variable <coefd_(nbd_(1))>, part of index is read from memory
vectorization support: vector length 2

vectorization support: unroll factor set to 4

vectorization support: normalized vectorization overhead 0.139

unmasked unaligned unit stride loads: 1

unmasked indexed (or scatter) stores: 1

--- begin vector cost summary ---

scalar cost: 4

vector cost: 4.500

estimated potential speedup: 0.880

--- end vector cost summary ---

unrolled with remainder by 2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Getting your application ready for profiling

* Always add -g

* No performance penalty
* On Cray Systems (Theta) add -dynamic
* Ex:

e cc-g-xMIC-AVX512 -dynamic -c test.cpp

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Application

Performance Snapshot

Profile your entire application at scale

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

= |nformative, actionable data in clean HTML report
= Detailed reports available via command line

= Low overhead, high scalability

= Can be run at scale - python ML/AI profiles

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home

$ module load aps
Launch your job in interactive or batch mode:

$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aps -report=./aps result ...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-01 12:08:48

Nomber of ks 142 Your application is MPI bound.

anks per node:

OpenMpp threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: intel(R) Xeon(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling tools

Logical Core Count per node: 72

like Intel ® Trace Analyzer and Collector to explore performance bottlenecks.

53.74%R <10%
043% <10%

14.70% <20%
0.30%K >50%
0.00% <10%

50.98 0.68

SPFLOPS CPl
(MAX 0.81, MIN 0.65) -
: QpenMP Imbalance Memory. Stalls
53.74%r of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%N
65.23: 0.52s
() ¢) Cache Stalls SP.FLOPs per. Cycle
MPI Imbalance 12.84% of cycles 0.08 Out of 32.00

11.03% of El d Ti
RE ;9:)0 apeec Time DRAM stalls Vector Capacity Usage
’ . 0.18% of cycles 25.84%K~
TOP 5 MPI Functions % Per node:
Waitall 3735 Peak: 786.96 MB ’;WU;V;; . . FP Instruction Mix
. . of remote accesses
Jsend 6.48 Average: 687.49 MB °
3 Per rank:
Barrier 5.52 Peak: 127.62 MB
Irecv 3.70 Average: 38.19 MB
Scatterv 0.00 V";”a]: .
er node:
Peak: 9173.34 MB 0.07R
1/Q Bound Average: 9064.92 MB EP Arith/Mem. Wi Instr. Ratio
Per rank: 0.30K

=

=~
(‘\;)

o

(=]

(=]

N

Peak: 566.52 MB
........ Average 502 61 MR

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning Workflow

Intel® VTune™ Amplifier's
Application Performance Snapshot

MP| Bound FPU
MPI iImbalance CPU Bound Bz inll underutilization
Memory Bound el (vector efficiency
* Thread-level scalability issues parallelization issues)

and Collector

(OpenMP analysis) I
Intel® Trace Analyzer I +

Intel® Advisor

Intel® MP| Tuner Intel® VTune™ Amplifier Threading Vectorization

CLUSTER NODE CORE

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® VTUNE™ Amplifier

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/vtune-xc40

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= Low overhead

= Comprehensive (microarchitecture, memory, |10, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

= User-mode driverless sampling

= Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
= hpc-performance HPC Performance Characterization

®" memory-access Memory Access

= disk-io Disk Input and Output

= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= |ocksandwaits Locks and Waits Python Support

= memory-consumption Memory Consumption
= system-overview System Overview

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Running on Theta

e Cray systems (such as Theta) use aprun instead of mpirun

* No SPMD notation

* mpirun -n 1 amplxe-cl -c hotspots ./exe : -n <N-1> ./exe

* Use SPE_RANK in a bash script instead
* If SPE_RANK==0 amplxe-cl -c hotspots ./exe; else ...

e PMI_NO_FORK
e Disable darshan

* Dynamic Linking

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

amplxe.qsub Script

* Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub
* All-in-one script for profiling

* Job size - ranks, threads, hyperthreads, affinity Google vune ai v Q

All Shopping News Images Videos More Settings Tools

* Attach to a single, multiple or all ranks

About 575 results (0.33 seconds)

° Bina ry as a rg#l' in put as a rg#z VTune on XC40 | Argonne Leadership Computing Facility
https://www.alcf.anl.gov/user-guides/vtune-xc40 v
VTune is an advanced profiling tool which helps you to optimize your code on the KNL architecture. It
o C]SUb amp|xe.q5Ub ./yOU r_exe argl argz “ee allows you to track how well your code is threaded and ...

You've visited this page 5 times. Last visit: 4/29/19

* Binary and source search directory locations

* Timestamp + binary name as result directory

* Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Viewing the result

* Text file reports:
* amplxe-cl -help report How do | create a text report?

* amplxe-cl -help report hotspots What can | change
* amplxe-cl -R hotspots -r ./res_dir -column=? Which columns are available?
e Ex: Report top 5% of loops, Total time and L2 Cache hit rates
* amplxe-cl -R hotspots -loops-only \
-limit=5 -column="“L2_CACHE_HIT, Time Self (%)”
* Vtune GUI

* amplxe-gui

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VIUNE AnIpInE @ sEIUY e

b o2 bBOS O

CUPYIIBIIL

*Other names and brands may be claimed as

Algorithm Analysis
Basic Hotspots
Advanced Hotspots
Concurrency

Locks and Waits

Memory Consumption

A Analysis Type

Microarchitecture Analysis

General Exploration
Memory Access
TSX Exploration
TSX Hotspots

SGX Hotspots

Platform Analysis
CPU/GPU Concurrency
System Overview

GPU Hotspots

GPU In-kernel Profiling
Disk Input and Output

Custom Analysis

LO, 11ILE1 CUI PUIGUUI L AT IS 162

HPC Performance Characterization 23]

Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
memory usage, and FPU utilization with vectorization information.

For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops
that will benefit the most from refined vectorization and gives tips for improvements.

The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

A Vectorization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available.

Analysis

CPU sampling interval, ms
K

|
&l Copy Command Line to Clipboard@jlselogin2 X
Py P Jlselog

Command line:

[soft/compilersfintelivtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-
performance -app-working-dir fusr/bin -- Is

Copy |

[Use -collect-with action

Hide knobs with default values
-

e property of oth

(22 command Line... :

b |

Hotspots analysis for nbody demo

e gsub amplxe.gsub ./your_exe ./inputs/inp

i &m|) 0 0F O weicome Vaneres X = OpenMP Region Duration Histogram
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER 2018 This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
4 ElCollection Log @ Analysis Target. A Analysis Type | & Summary | & B -up @ Caller/Callee @ Top-downTree “iPlatform b bottieneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration.

OpenMP Region: | startSomp$parallel 64@unknown:146:182 -
Elapsed Time : 1.037s

CPU Time % 21.420s g
Effective Time “: 2.280s 8
Spin Time ¥ 18.660s 4001 8
Imbalance or Serial Spinning®: 17.319s & 2
Lock Contention 0s 3004
the: 13425
Overhead Time “: 0.480s 200
tal Thread (it 64
Paused Time 0s 100
OpenMP Analysis. Collection Time : 1.037 0 0002 Py
Serial Time (outside parallel regions) = 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions)
Parallel Region Time " : 0.304s (29.3%) Duration Type (sec)

Top Hotspots
CPU Usage Histogram Lots of spin time indicate issues with load balance and synchronization

This histogram displays a percentage of the wall time the specific number of CPUs were running simutaneously. Spin and Overhead time adds to the Idle CPU usage

1000ms

£y § Given the short OpenMP region duration it is likely we do not have
" % sufficient work per thread
::: i Let’s look a the timeline for each thread to understand things better...

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up Hotspots view

@ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

4 D CollectionLog @ Analysis Target A Analysis Type 3 Summary @& Bottom-up &3 Caller/Callee & Top-down Tree ‘= Platform [3 GSimulation...

=y

There is not enough work per thread

Grouping: | Module / Function / Call Stack v[&][Q][t]l[crutme] . . .
ey « mm o s (0 this particular example
Module / Function / Call Stack Effective Time by Usizalion o Trme ® codTme | Modue 100.0% (2 260s of 2.260s) °
Side @Poor 8Ok @ideal @ Over P e nbodyx!GSimulation- startSomp

» libiomps.so 0s 184 eeOs 03205 | " libiomps sol
v nbody.x 2.260s _ 0.160s { libiomp5. so'[

P dispatche.

e Double click on line to access source

» GSimulation:start

160s nbody.x GSimulation: ‘start(void)

nbody.xIma \moOxBG main.cpp:43

» [Unknown]).020s \ [nbodyx!_start+0x28 - start S:118
< > < >
O:id — w 08 01s 02s 99s 15 | Rulerrex
§ OMP Master Thread #0 (TID A 222:;:::::
£ OMP Worker Thread #60 (T1 Barrier Sogrment
OMP Worker Thread #56 (TI [Tvead g
OMP Worker Thread #50 (TI I Running
OMP Worker Thread #55 (TI . CPU Time
OMP Worker Thread #54 (TI s Spin and Overhea
OMP Worker Thread #49 (Tl O ® cPuSample
OMP Worker Thread #58 (T1. [cPuUsage
OMP Worker Thread #59 (TI
OMP Worker Thread #61 (T1
OMP Worker Thread #52 (TI
OMP Worker Thread #41 (Tl
OMP Worker Thread #47 (Tl
OMP Worker Thread #35 (TI
OMP Worker Thread #39 (Tl .
FILTER 1000% % | | AnyProcess - | Thread | Any Thread || Any Module | Any Utiizatio | S Only user functions || Show iniine functic + | Functions only

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

Intel VTune Amplifier

= (| B = e

Welcome x

Bottom-up

Grouping:{ Function / Call Stack v|@

Function/ Call Stack CPU Time ¥ 7.| Module Function (Full) Source File Start Address | ~
» vdpowr_ 18.664s libmkl_intel_Ip64.so vdpowr_ 0x695310
) aa 10.495s distress aa aux.fo0 Ox41ecic
) aa 9.674s distress aa aux.foo Ox41ec9a
) invariants 9.055s distress invariants aux.fo0 0x41d550
b __libm_csqrt_ex 7.792s libimf.so __libm_csqrt_ex Oxc7a50
) spinoru 7.779s distress spinoru aux.fo0 0x41e9e0
) ktjet 7.137s distress ktjet analysis.f90 0x420ae0]
) __svml_log8_mask_b3 6.056s distress __svml_log8_mask_b3 0x532f50 i
» breit2lab 2.096s distress breit2lab | PS.f90 0x4602d0
) getljet 1.857s distress getljet analysis.f90 0x421830
» me0_glqlgg 1.814s distress me0_qlqlgg amplitudes.f90 0x4408d0
) __libm_acos_I9 1.688s libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.658s distress analyzejet analysis.f90 0x422050
) ds_gl_s_nnlo_qgcd_g 1.605s distress ds_gl_s_nnlo_qgcd_g sub.f90 0x4694e0
: csart sl 1.384s libimf.so csart 0x1d430 v

O: s = ¢ ¢ 0s 20s 40s 60s 80s 100s 120s 140s |Thread V| “
§ distress (TID: 55598) [ERunning
£ WuCPU Time

W Spin and Overhead ...

CPU Utilization

o 1000%

Any Thread ~| [AnyModue v| |Any Utiizati v

[J] ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

User functions + 1~ | | Show inline funct

Intel VTune Amplifier - a X

2 & P & B = O welome x|

Bottom-up

Grouping:i Function / Call Stack "|@
A

Function / Call Stack CPUTime ¥V Module Function (Full) Source File Start Address
: libmkI_intel_Ip64.so vdpowr_ 0x695310

distress aa Ox41ecic
_______________________ distress @ . awxf0 Oxdfecsa
_______________________ distress x41d550
libimf.so Oxc7a50
) spinoru 5.5% distress spinoru aux.f30 0x41e9e0
) ktjet 5.0% distress ktjet analysis.f90 0x420ae0]
) __svml_log8_mask_b3 4.3% distress | __svml_log8_mask_b3 | | 0x532f50 i
) breit2lab 1.5% distress breit2lab PS.f90 0x4602d0
) getljet 1.3% distress getljet analysis.f90 0x421830
» me0_glqlgg 1.3% distress me0_qlqlgg amplitudes.fo0 0x4408d0
) __libm_acos_I9 1.2% libimf.so __libm_acos_I9 Oxedd80
) analyzejet 1.2% distress analyzejet analysis.f90 0x422050
) ds_gl_s_nnlo_qgcd_g 1.1% distress ds_gl_s_nnlo_qgcd_g sub.f90 0x4694e0
» csart 1.0% libimf.so csart 0x1d430 v
< > || < >
O: s = ¢ ¢ 0s 20s 40s 60s 80s 100s 120s 140s |Thread V| “
§ distress (TID: 55598) [ERunning
£ #aCPU Time
W Spin and Overhead ...

[J] ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

CPU Utilization

v
Copyright © P N P : N ntel | 24
‘Sltl\rerhmm‘ o 00.0% Y Any Process v | | Any Thread ~ || Any Module v || Any Utilizatii v User functions +1 ~| [Show inline func{ v| | Functions only | [

Intel VTune Amplifier

SRz A =

Welcome x

<

>

<

Bottom-up
Grouping:{ Source Function / Function / Call Stack v|@
Source Function / Function / Call Stack CPU Time ¥ Module Function (Full) Source File Start Address ~
) aa 14.2% aa aux.fo0 0
) vdpowr_ 13.1% vdpowr_ 0
) invariants 6.4% invariants aux.f30 0
» __libm_csqrt_ex 5.5% __libm_csqrt_ex 0
) spinoru 5.5% spinoru aux.f90 0
) ktjet 5.0% ktjet analysis.f90 0
» __svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0]
) subqcd 3.2% subqcd amplitudes.f90 0 i
) breit2lab 1.6% breit2lab PS.f90 0
» hamp_glglggb_1 1.4% hamp_gqlqglqgb_1 amplitudes.f90 0
) getljet 1.3% getljet analysis.f90 0
» me0_glqlgg 1.3% me0_glqlgg amplitudes.f90 0
) __libm_acos_I9 1.2% __libm_acos_I9 0
) analyzejet 1.2% analyzejet analysis.f90 0
» hamp alaloab 2 1.1% hamp alalaab 2 amplitudes.f90 0 v

>

Thread

O:ig = o 0s 20s 40s 60s 80s 100s 120s 140s
distress (TID: 55598)

Copyright ©f

*Other nam

CPU Utilization

(Y] Y

Any Thread ~| [AnyModue v| |Any Utiizati v

| Thread]
[ERunning
WaCPU Time
waSpin and Overhead ...
[J ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

User functions +1 || Show inline funcf ~

Copyright ©f ‘ Y

Intel VTune Amplifier

SRz A =

Welcome x

Bottom-up
Grouping:| Source Function / Function / Call Stack v|@
Source Function / Function / Call Stack CPU Time ¥ Module Function (Full) Source File Start Address ~
27.5% spinoru aux.f90 0
) invariants 9.0% invariants aux.f30 0
) getpdfs 8.3% | getpdfs fitpdf.f90 0
) ktjet 6.9% ktjet analysis.f90 0
» me0_glqglgg 6.1% me0_qlqlgg amplitudes.f90 0
) __svml_log8_mask_b3 5.9% __svml_log8_mask_b3 0
) breit2lab 2.5% breit2lab PS.f90 0]
> dli2 2.4% dli2 lis.f90 0 i
) getljet 1.8% getljet analysis.f90 0
) analyzejet 1.6% analyzejet analysis.f90 0
» me0_glqlqgb_f3 1.6% ' me0_gqlqlqgb_f3 ‘amplitudes.f90 0
» ds_gl_s_nnlo_qcd_g 1.6% ds_qgl_s_nnlo_ged g sub.f90 0
» me0_glqlqgb_f4 1.3% me0_qlqlqgb_f4 amplitudes.f90 0
) ps4 1.3% ps4 PS.f90 0
» for costr 1.3% 'for costr ' 0 v
< > || < >

Thread

O:ig = o 0s 20s 40s 60s 80s 100s 120s 140s
distress (TID: 55598)

CPU Utilization

Any Thread | [98.9%] distres: v | | Any Utilizatic v

| Thread]
[ERunning
WaCPU Time
waSpin and Overhead ...
[J ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

User functions + 1 v || Hide inline functic

Copyright ©

*Other nam

Intel VTune Amplifier

= (| B = e

Welcome x

Bottom-up

Grouping:| Source Function / Function / Call Stack v | @

Source Function / Function / Call Stack CPUTime ¥ »/| Module Function (Full) Source File Start Address ~
[Loop at line 264 in spinoru] 23.8% [Loop at line 264 in spinoru] aux.fo0 0
) [Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.f90 0
) [Loop at line 2499 in dxsec_gql_nnlor] 11.1% [Loop at line 2499 in dxsec_gl_nnlor] xsec.f90 0
) [Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.fo0 0
) [Loop at line 2750 in dxsec_gl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f90 0
) [Loop at line 60 in ktjet] 3.1% [Loop at line 60 in ktjet] analysis.f90 0
) [Loop at line 1778 in ds_qgl_s_nnlo_qcd_g 2.9% [Loop at line 1778 in ds_ql_s_nnlo_gcd_g] sub.f90 0 -
) [Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.fo0 0 i
) [Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.fo0 0
) [Loop at line 2055 in ds_qgl_s_nnlo_qcd_f? 2.0% [Loop at line 2055 in ds_gl_s_nnlo_qgcd_f2] sub.f90 0
) [Loop at line 43 in ktjet] 2.0% [Loop at line 43 in ktjet] analysis.f90 0
) [Loop at line 1986 in ds_gl_s_nnlo_qcd_f 1.8% [Loop at line 1986 in ds_ql_s_nnlo_gcd_f1] sub.f90 0
) [Loop at line 1882 in ds_gl_s_nnlo_qgcd_g 1.8% [Loop at line 1882 in ds_ql_s_nnlo_qgcd_g] sub.f90 0
) [Loop at line 1846 in ds_qgl_s_nnlo_qcd_g 1.8% [Loop at line 1846 in ds_gl_s_nnlo_gcd_g] sub.f90 0
: [Loop at line 1812 inds al s nnlo acd)a . 1.7% [Loop at line 1812 inds al s nnlo acd al sub.f90 0 . v

O: e = i EH 20s 40s 60s 80s 100s 120s 140s |Thread V| -
§ distress (TID: 55598) [ERunning
£ #aCPU Time
W Spin and Overhead ...

[J] ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

CPU Utilization

‘ 8% o

Any Thread ~| 1198.9%] distrest | | Any Utilizatic v

User functions +1 || Show inline functi

@l 27
—

Intel VTune Amplifier

= SN (| =2

@

Welcome x

Top-down Tree

Grouping:| Call Stack

ol

CPU Utilization

()

Copyright ©f
*Other nam

B

Any Thread ~| [AnyModue ~| | Any Utilizatic -

Function Stack CPUTime: Total ¥ »/| CPUTime:Seff »| Module | Function (Full) | SourceFile | Start Address | A
v Total 100.0% 0Os
v [Outside any loop] 99.9% 0.020s | [Outside any loop] | 0
v [Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.f90 0x4162c8
v [Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.fo0 0x416641
v [Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] |vegas.fo0 0x4166f1
v [Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f80 0x49ba17
v [Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.f90 Ox41ecd6 -
23.2% 32.939s | distress [Loop at line 264 in spinoru] aux.fo0 Ox41edcf i
» [Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea94
» [Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] ' aux.f90 O0x41ec41
» [Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢9
» [Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
) [Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
) [Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.fo0 0x420c70
- » ILoob at line 2750 in dxsec u)l . 3.8% 4.494s distress [Loob at line 2750 in dxsec al... xsec.fo0 0x49d2b2 . v
O:ide = & 0s 20s 40s 60s 80s 100s 120s 140s |Thread V| -
§ distress (TID: 55598) [ERunning
£ #aCPU Time
W Spin and Overhead ...

[J] ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

User functions + 1 | | Show inline functi v

@l 28
—

@ Intel VTune Amplifier - O
Z & P& B = O welcome amplxe_distress__2019-04-10-20-23 x =
Hotspots Hotspots by CPU Utilization ~ @ INTELVTUNE AMPLIFIER 2019
Analysis Configur HPC Performance Characterization - gttom_yp Caller/Callee ~ Top-down Tree Platform aux.f90 x aux.f9 - /
Grouping:| Call Sta Hotspots by CPU Utilization |VH P U
) . alv » l CPU Time: Self » Module | Function (Full) l Source File | Start Address | ~
Total Threading Efficiency 100.0% 0s
+ [Outside any loop] [99.9% 0.020s [Outside any loop] 0
[Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
[Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
[Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
[Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_ql... xsec.f90 0x49ba17
[Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.f90 Ox41ecd6
[Loop at line 264 in spinor 23.2% 32.939s distress [Loop at line 264 in spinoru] aux.fo0 Ox41edcf
[Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea94
[Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 O0x41ec41
) [Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669c9
) [Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop atline 1169 in LHAPDF:... stl_tree.h 0x66960
[Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
[Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.fo0 0x420c70
2 [Loob at line 2750 in dxsec a)l 3.8% 4.494s distress [Loob at line 2750 in dxsec al... xsec.fo0 0x49d2b2 v
o+ P B M e s s s WS o) [Teea v
£ waCPU Time
WaSpin and Overhead ..
[] ®CPU Sample
CPU Utilization
WaCPU Time
W Spin and Overhead ---

— CPU Utilization

Copyright ORSISd=I=] 100.0% % | |AnyProcess v| IAnyThread v| IAnyModuIe vl |AnyUtiIizati(v| | |Userfunctions+1 vl IShowinIinefunctiv| ILoopsonly

*Other nam

Intel VTune Amplifier@jlselogin1 - - 8

Z &% r & B = O | welcome x || roo0hpc x -
= e T

NTT

Bottom-up
Grouping:| Function / Call Stack v |@
» » Back-End Bound
Function / Call Stack -ﬁm"e ¥ | CPIRate Front-End Bound Bad Speculation Memory Latency Mer
L1 Hit Rate L2 Hit Rate L2 Hit Bound L2 Miss Bound UTLB Overhead Split Loads

09 15.2% %| __97.9%| _100.0% %
) bicub_interpol2_aio_vec 11.1% 1.488 36.4% 0.9% 97.8% 100.0% 7.2% 0.0% 0.3% 0.0%
) efield_gk_elec2_vec 10.9% 1.850 29.2% 1.0% 85.2% 100.0% 31.0% 0.0% 2.7% 0.0%
) derivs_elec_vec 8.7% 2.241 57.9% 0.2% 86.2% 100.0% 28.7% 0.0% 0.3% 0.0% | H
) field_following_pos2_vec 5.7% 0.969 43.6% 1.8% 94.3% 100.0% 33.3% 0.0% 0.2% 0.0%|
) i_interpol_ider0_aio_vec 5.3% 1.896 12.0% 0.0% 89.5% 100.0% 11.8% 0.0% 0.5% 0.0%
) field_vec 4.8% 2.413 57.1% 0.0% 89.9% 100.0% 23.6% 0.0% 0.0% 0.0%
» derivs_single_with_e_ele 3.0% 1.734 55.5% 0.0% 88.5% 100.0% 34.4% 0.0% 0.8% 0.0%
» fld_vec_modulefield_follo 3.0% 1.189 34.9% 6.7% 74.0% 100.0% 73.0% 0.0% 0.9% 0.0%
» bvec_interpol_vec 29% 1131 38.8% 0.0% | 91.2% 100.0% 36.2% 0.0%| 0.0% | 0.0%|
» pushe_single_vec 2.3% 1.943 43.9% 1.5% 71.3% 100.0% 54.7% 0.0% 1.1% 5.1%
ﬂtemol ider0 aio vec o o 0.0% 0.0% 1.4% 0.0%

O: dp wu i ir0s 183.876s |200s @ [Thread v

"B/ OMP Master Thread #0 (... # [@Running
g « @aCPU Ti
3 OMP Worker Thread #1 (... 7 v ime
OMP Worker Thread #2 (... ¥ CPU Time
#aCPU Time

OMP Worker Thread #3 (...

OMP Worker Thread #17 ... paused
OMP Worker Thread #55 ...
OMP Worker Thread #52 ...
CPU Time]
(1) X O

®

Software

Profiling Python

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Or use amplxe.qgsub script as a starting point

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © INTEL VTUNE AMPLIFIER 2018
© ElCollectionLlog O Analysis Target A Analysis Type & Summary & Bottom-up & Caller/Callee @ Top-down Tree ':.Platform [3 cov.py o

Elapsed Time : 209.598s

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance 1

Function Module CPU Time

covpy 1135335

covpy 91587s

vown module] 1460s

a 1260s

module covpy 0588s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

Target Wiization

50 00 150 200 250

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Naive implementation of the calculation of
a covariance matrix

Summary shows:
= Single thread execution
= Top function is “naive”

Click on top function to go to Bottom-up
view

Bottom-up View and Source Code

& Basic Hotspots HulspdlsbyCPUUsag:viewpoinl(mmg)‘? I

/ 3

4 EcollectionLog O Analysis Target A Analysis Type & Summary & Bottom-up @3 Caller/Callee @ Top-down Tree -~ Platform [3 cov.py .
Grouping:| Module / Function / Call Stack V| X]Q CPU Time
CPU Time ¥ ~ [Viewing < 10of 1 + selected stack(s)
Module / Function / Call Stack » Module 100.0% (112 473s of 112 473s)
0ide E:’SQ'L‘ Tmé: i ;n l‘;:m; Over S || GEni D covpylnaive - covpy
v covpy 2037285 (D 2280s 0s covpylmain+0x42 - covpy.200
¥ naive 111.873s 1.660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy.
v main 1108335 (N 1.660s 0s_covpy main() python2.71_start+0x28 - [unknow.
1108135 16605 0s | covpy <modue>
» B main — <module> — _star covpy main()
» [naive — main — <module> « 1.040s 0s 0s covpy naive(fulArray)
» <genexpr> 90.967s (NEEEED 0.620s 0s covpy naive@-<genexpr>
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown] 2720s | 0s 0s
» libc-dynamic so
» python2 7
» libpin3dwarf so
» rarkronc cn v
< > < >
0s 50s 100s 1505 200s

o: +

python (TID: 218893)

Thread
) Il Running
] maCPU Time
[ma Spin and Overhead Ti
O @ cpu sample

Thread

Inefficient array multiplication found quickly
We could use numpy to improve on this

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

4 B Log O Analysis Target A Analysis Type & y & Bottom-up @ Caller/Callee @ Top-down Tree ‘=
Assembly % % ¥ Q Assembly grouping: Function Range / Basic Block / Address
CPU Time:
Sou.. Source Effective Time by Util
Line y Utili
Bidie BrPoor @Ok B ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for j in range (numRows): |
64 normArrays(i] [§]=fullarray(:, i]([j]-np.mean(fullarray(:, i 63%[l}
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for § in range (numCols): |
70 result[i,j] = sum(p*g for p,q in zip(
n normArrays(i),normArrays(j)))/ (numRows)
72
73 end = time.time()
74 print('overall runtime = ' 4+ astr(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Python & ML/DL

Vtune overheads scale with number of threads
First, ask yourself what is exactly that you want to find out?
* MPI call cost distribution can be acquired running aps at scale

* MKL call information will be given if you do MKL_VERBOSE=1 python job.py

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

®

Software

Managing overheads

ITT_NOTIFY

* Instrument your code with itt_pause() and itt_resume()
e Start, stop, detach and finalize your collection

* Great when
* Interested in specific region of code

 Difficult to adjust overall runtime of your application
* Available in Fortran, C/C++, and Python

 Works with APS, Vtune, and Advisor

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS

* apsis meant to scale so has least amount of built-in knobs
e Does work with itt_notify

e E.x: Profile the training portion of ML app, excluding setup and finalization
* Insertitt_resume() before training step
* Insertitt_detach() after training step

* aprun aps --start-paused python ./app --argl --arg2

e Run paused, resume before training, detach and finalize after training
* Job can be killed after itt_detach() is called

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Survey has to be run always

* (Qverheads minimal

* advixe-cl -R survey --project-dir ./res ...
e advixe-cl -c tripcounts --mark-up-list=4 ...
* --interval=100

--stop-after=1000 (1000 seconds)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

LD

Use mark-up-list tripcounts/map/dependencies only for regions of interest

Function Call Sites and Loops

loop 1n GSimulation::start at GSimulation.cpp:208]
loop 1n GSimulation::start at GSimulation.cpp:248]
loop in fi_ini]

loop in GSimulation::init_vel at GSimulation.cpp:63]
loop in GSimulation::start at GSimulation.cpp:193]

[

[

[

[loop in fi_inil

[

[

[loop in GSimulation::start at GSimulation.cpp:102]

Total Time

96.830s
0.040s
0.040s
0.040s
0.010s
96.830s
96.900s

Finalization

This step is inherently serial, takes a long time on KNL
SRC="--search-dir src:=/abs/path/to/source”
BIN="“--search-dir bin:=/abs/path/to/binary”
* Advisor
* aprun advixe-cl -c survey --project-dir test -no-auto-finalize
* advixe-cl -R survey --project-dir test SSRC SBIN
* Vtune
e aprun amplxe-cl -c hotspots -r test -no-auto-finalize

* amplxe-cl -R summary -r test SSRC SBIN

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Common Issues

* |don’t see my functions

* Debug symbols
* Do atext report, look for “Cannot find” warnings
e Add those to --search-dir

e Re-finalize

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Common Issues

* My python job hangs
* Detach collection before your job finishes (--duration, --stop-after, or itt_detach)

e Reduce number of threads

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Remember

Compile with -g and -dynamic
Profile 1 rank and small number of threads - amplxe.gsub/advixe.qsub
Advisor for big picture

Vtune for details

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages
= https://software.intel.com/sites/products/snapshots/application-snapshot
= https://software.intel.com/en-us/advisor

= https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles
= https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems
= https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

= https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-covariance-
demonstration

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

When do | use Vtune vs Advisor?

Vtune

What’s my cache hit ratio?

Which loop/function is consuming most
time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

VTune Cheat Sheet

Compile with —g -dynamic

amplxe-cl —-c¢ hpc-performance -flags -- ./executable
* --result-dir=./vtune output dir
e -—--search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true -knob collect-memory-
bandwidth=false

* -knob analyze-openmp=true

* -finalization-mode=deferred if finalization 1s taking too long on KNL
* -data-limit=125 € in mb

* -—-trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

Optimization Notice https://software.intel.com/en-us/vtune-amplifier-help-amplxe-

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. cI-command-syntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl —-c¢ roofline/depencies/map —-flags -- ./executable

—--project-dir=./advixe output dir
——-search-dir src:=../src —--search-dir bin:=./

-no—auto-finalize if finalization 1s taking too long on
KNL

-—interval 1 (sample at 1lms interval, helps for profiling
short runs)

—~data-1imit=125 € in mb

advixe-cl -help

Optimization Notice https://software.intel.com/en-us/advisor-help-lin-command-

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

line-interface-reference

L]
I l bod - Ve r .’ I I I I pvelesko@jlseloginl ver5_mpil$ mpirun -n 2 advixe-cl -c survey --project-dir SDL -- ./nbody.x
Intel(R) Advisor Command Line Tool

Copyright (C) 2009-2019 Intel Corporation. All rights reserved.
Intel(R) Advisor Command Line Tool
Copyright (C) 2009-201EMlIntel Corporation. All rights reserved.

: Collection started.
Collection started.

Initialize Gravity Simulation
nPart 2000; nSteps 50

2.4341
8.1256
17.877
32.966
55.786
350 91.132
400 - 150.12
450 - 264.78
500 571.53

Number Ranks B 2

Number Threads g 1

Total Time (s) 1 10.415

Average Perfomance : 5.5717 +- 0.0046592

Collection
: Collection o
: Opening result 21 % Resolving for “libc.
5 5 locate debugging for file " /1ib64/1libc.so0.6"'.

8 locate debugging for file " /1ib64/1libc.so.6'.
: Opening result 100 % done

: Preparing frequently used data 0 % done

: Preparing frequently used data 100 % done

Elapsed Time: 10.43s
otal CPU time: 10.42

: Opening result 99 % done
: Preparing frequently used data 0 % done
: Preparing frequently used data 100 % done

Elapsed Time: 10.43s
otal CPU time: 10.42

pvelesko@jlseloginl ver5_mpils
pvelesko@)lseloginl ver5S_mpils

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

